Fibroblast growth factor 23 and markers of mineral metabolism in individuals with preserved renal function.

TitreFibroblast growth factor 23 and markers of mineral metabolism in individuals with preserved renal function.
Publication TypeJournal Article
Year of Publication2016
AuthorsDhayat, NA, Ackermann, D, Pruijm, M, Ponte, B, Ehret, G, Guessous, I, Leichtle, ABenedikt, Paccaud, F, Mohaupt, M, Fiedler, G-M, Devuyst, O, Pechère-Bertschi, A, Burnier, M, Martin, P-Y, Bochud, M, Vogt, B, Fuster, DG
JournalKidney Int
Volume90
Issue3
Pagination648-57
Date Published2016 Sep
DOI10.1016/j.kint.2016.04.024
ISSN1523-1755
Abstract

Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that regulates phosphate homeostasis. Circulating FGF23 is elevated in chronic kidney disease (CKD) and independently associated with poor renal and cardiovascular outcomes and mortality. Because the study of FGF23 in individuals with normal renal function has received little attention, we examined in a large, population-based study of 1128 participants the associations of FGF23 with markers of mineral metabolism and renal function. The median estimated glomerular filtration rate (eGFR) of the cohort was 105 ml/min per 1.73 m(2), and the median plasma FGF23 was 78.5 RU/ml. FGF23 increased and plasma 1,25-dihydroxyvitamin D3 decreased significantly below an eGFR threshold of 102 and 99 ml/min per 1.73 m(2), respectively. In contrast, plasma parathyroid hormone increased continuously with decreasing eGFR and was first significantly elevated at an eGFR of 126 ml/min per 1.73 m(2). On multivariable analysis adjusting for sex, age, body mass index, and GFR, FGF23 was negatively associated with 1,25-dihydroxyvitamin D3, and urinary absolute and fractional calcium excretion but not with serum calcium or parathyroid hormone. We found a positive association of FGF23 with plasma phosphate, but no association with urinary absolute or fractional phosphate excretion and, unexpectedly, a positive association with tubular maximum phosphate reabsorption/GFR. Thus, in the absence of CKD, parathyroid hormone increases earlier than FGF23 when the eGFR decreases. The increase in FGF23 occurs at a higher eGFR threshold than previously reported and is closely associated with a decrease in 1,25-dihydroxyvitamin D3. We speculate that the main demonstrable effect of FGF23 in the setting of preserved renal function is suppression of 1,25-dihydroxyvitamin D3 rather than stimulation of renal phosphate excretion.

Alternate URL

http://www.ncbi.nlm.nih.gov/pubmed/27370409?dopt=Abstract

Alternate JournalKidney Int.
Citation Key / SERVAL ID7158
PubMed ID27370409

                         

IUMSP | www.iumsp.ch
Institut universitaire de médecine sociale et préventive
Route de la Corniche 10, 1010 Lausanne - Switzerland
+41 21 314 72 72 | dess.info@unisante.ch

Go to top