Adaptively weighted maximum likelihood estimation of discrete distributions

TitreAdaptively weighted maximum likelihood estimation of discrete distributions
Publication TypeThesis
Year of Publication2011
AuthorsAmiguet, M
Number of Pages118
UniversityUniversité de Lausanne, Faculté de biologie et médecine
CityRue du Bugnon 21 - CH-1015 Lausanne SUISSE
Thesis TypePhD
Call NumberIUMSP W4-QA-276-Ami-2011
Other NumbersRERO:R005957640
Abstract

Summary

Discrete data arise in various research fields, typically when the observations are count data.I propose a robust and efficient parametric procedure for estimation of discrete distributions. The estimation is done in two phases. First, a very robust, but possibly inefficient, estimate of the model parameters is computed and used to indentify outliers. Then the outliers are either removed from the sample or given low weights, and a weighted maximum likelihood estimate (WML) is computed.The weights are determined via an adaptive process such that if the data follow the model, then asymptotically no observation is downweighted.I prove that the final estimator inherits the breakdown point of the initial one, and that its influence function at the model is the same as the influence function of the maximum likelihood estimator, which strongly suggests that it is asymptotically fully efficient.The initial estimator is a minimum disparity estimator (MDE). MDEs can be shown to have full asymptotic efficiency, and some MDEs have very high breakdown points and very low bias under contamination. Several initial estimators are considered, and the performances of the WMLs based on each of them are studied.It results that in a great variety of situations the WML substantially improves the initial estimator, both in terms of finite sample mean square error and in terms of bias under contamination. Besides, the performances of the WML are rather stable under a change of the MDE even if the MDEs have very different behaviors.Two examples of application of the WML to real data are considered. In both of them, the necessity for a robust estimator is clear: the maximum likelihood estimator is badly corrupted by the presence of a few outliers.This procedure is particularly natural in the discrete distribution setting, but could be extended to the continuous case, for which a possible procedure is sketched.

Résumé

Les données discrètes sont présentes dans différents domaines de recherche, en particulier lorsque les observations sont des comptages.Je propose une méthode paramétrique robuste et efficace pour l'estimation de distributions discrètes. L'estimation est faite en deux phases. Tout d'abord, un estimateur très robuste des paramètres du modèle est calculé, et utilisé pour la détection des données aberrantes (outliers). Cet estimateur n'est pas nécessairement efficace. Ensuite, soit les outliers sont retirés de l'échantillon, soit des faibles poids leur sont attribués, et un estimateur du maximum de vraisemblance pondéré (WML) est calculé.Les poids sont déterminés via un processus adaptif, tel qu'asymptotiquement, si les données suivent le modèle, aucune observation n'est dépondérée.Je prouve que le point de rupture de l'estimateur final est au moins aussi élevé que celui de l'estimateur initial, et que sa fonction d'influence au modèle est la même que celle du maximum de vraisemblance, ce qui suggère que cet estimateur est pleinement efficace asymptotiquement.L'estimateur initial est un estimateur de disparité minimale (MDE). Les MDE sont asymptotiquement pleinement efficaces, et certains d'entre eux ont un point de rupture très élevé et un très faible biais sous contamination. J'étudie les performances du WML basé sur différents MDEs.Le résultat est que dans une grande variété de situations le WML améliore largement les performances de l'estimateur initial, autant en terme du carré moyen de l'erreur que du biais sous contamination. De plus, les performances du WML restent assez stables lorsqu'on change l'estimateur initial, même si les différents MDEs ont des comportements très différents.Je considère deux exemples d'application du WML à des données réelles, où la nécessité d'un estimateur robuste est manifeste : l'estimateur du maximum de vraisemblance est fortement corrompu par la présence de quelques outliers.La méthode proposée est particulièrement naturelle dans le cadre des distributions discrètes, mais pourrait être étendue au cas continu.

URLhttp://my.unil.ch/serval/document/BIB_4FF2FDB7E2B3.pdf
Alternate URL

The R software "Weighted maximum likelihood estimation (WML)" cited in chapter 9 is available here : https://www.iumsp.ch/fr/node/6944 (description) ; https://www.iumsp.ch/sites/default/files/code/wml.zip (code and help file)

Short TitleAdaptively weighted maximum likelihood estimation of discrete distributions
Citation Key / SERVAL IDserval:BIB_4FF2FDB7E2B3
Type de publication IUMSP: 
Directeur de Thèse ou tuteur de travail de Master IUMSP: 
                         

IUMSP | www.iumsp.ch
Institut universitaire de médecine sociale et préventive
Route de la Corniche 10, 1010 Lausanne - Switzerland
+41 21 314 72 72 | iumsp@chuv.ch

Go to top